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The computational capabilities of neuronal networks are fundamentally constrained by their specific
connectivity. Previous studies of cortical connectivity have mostly been carried out in rodents; whether
the principles established therein also apply to the evolutionarily expanded human cortex is unclear.
We studied network properties within the human temporal cortex using samples obtained from brain
surgery. We analyzed multineuron patch-clamp recordings in layer 2-3 pyramidal neurons and identified
substantial differences compared with rodents. Reciprocity showed random distribution, synaptic strength
was independent from connection probability, and connectivity of the supragranular temporal cortex
followed a directed and mostly acyclic graph topology. Application of these principles in neuronal models
increased dimensionality of network dynamics, suggesting a critical role for cortical computation.

I
nformation in the brain is processed by
interactingneuronswhose activity is shaped
by synaptic connectivity (1,2). Local synapses
in rodent brains form recurrent networks
with nonrandom structures, which have

been implicated in various computations (3–6),
such as pattern completion or directional tun-
ing (7, 8). These local and intralaminar excit-
atory synapsesbetweencorticalpyramidalneurons
aremediated through basal dendrites and have
been attributed to bottom-up information pro-
cessing (9).How these rodentmicrocircuit prin-
ciples and their computational implications
translate to the evolutionarily expanded layer
2-3 (L2-3) of the human neocortex is un-
resolved. Studies of the human cortex have un-
covered a higher complexity at the cellular level

(10–19), which implies distinctmicrocircuit archi-
tectures underlying superior cognitive abilities
of humans (20). In this study, we testedwhether
the connectivity structure within L2-3 of
the human cortex also exhibits adaptation for
increased representational capacity anddimen-
sionality (21, 22). We analyzed a dataset on
monosynaptic connections identified by multi-
neuron patch-clamp recordings from acute hu-
man cortical brain slices (15, 23). The tissuewas
obtained from anterior temporal lobectomies
performed on temporal lobe epilepsy (TLE)
patients (n = 23). By recording up to 150mono-
synaptic connections per cortical sample, we
were able to derive essential wiring principles
of the human cortical microcircuit. We further
modeled and simulated these principles in re-
current neural networks and identified how
they affect the dimensionality of neural activity
and computation.

Local connectivity is
heterogeneously distributed

To analyze the network architecture of the hu-
man neocortex, we made use of our previously
reported dataset on cellular and synaptic prop-
erties of L2-3 pyramidal cells (PCs) from the
temporal cortex of TLE patients (Fig. 1A; see
methods in the supplementary materials) (15)
and focused on the connectivity patterns. A
hallmark feature in rodent cortical network
topology is the overrepresentation of reciprocal
connections compared with Erdős-Rényi (ER)
randomnetworkmodels (4, 5, 24–27). ERmod-
els are random graphs wherein each directed
connection between twonodes is independently
established with a uniform probability. In our
study, this means that connections are simu-
lated based on the pooled connection probabil-
ity that is determined by the ratio of all
observed to all tested connections. In ourhuman
data from TLE patients, we found no over-

representation of reciprocity, as we observed
only 96 reciprocal pairs out of 3600 tested
pairs. This is in good agreement with a generic
ER model (90 ± 10, mean ± SD) for random
connectivity at the observed pooled connection
probability of 15.8% (1137 out of 7200 tested
connections; Fig. 1B; see methods). However,
pooling connections across different recordings
could potentially obscure relevant structure
in the connectivity.
To address this limitation, we analyzed the

connectivity at the level of independent multi-
neuron patch-clamp recordings. In each record-
ing, we probed all possible connections between
neurons recorded at the same time, referring to
this group as a “cluster.” By recording up to 10
neurons in one cluster (cluster size = 10), we
probed up to 90 potential synaptic connections
at once (23). Our cluster-level analysis showed
consistent unidirectional (16.4 ± 10.6%, mean ±
SD) and reciprocal connectivity (2.7 ± 5.3%),
regardless of cluster size (Fig. 1C). Despite this
consistency in mean connectivity, we found
substantial variability between clusters, with
connection probabilities ranging from 0 to 50%,
even within the same tissue sample (fig. S1). We
quantified this cluster variability using the
coefficient of variance (CV), which also re-
mained high in larger clusters of 6 to 10 neu-
rons (0.4 to 0.6; fig. S2A). In this range, cluster
variability was also independent of patient-
specific sampling differences (fig. S2B). Finally,
cluster variability was preserved when control-
ling for slicing angle and cut axons (fig. S2, C
and D). Specifically, in our analysis of 787 pyra-
midal neuronswithmorphologically confirmed
intact axons, we found that 30 to 40% of these
neurons had no out-connections, even in neu-
rons with a high number of tested connections
(fig. S2E). This skewed distribution of out-
degrees of individual neurons forms the basis
for the heterogeneous distribution of cluster
connectivity, indicating that low connectivity
in clusters can arise irrespective of axon cutting
or sampling strategy.

Reciprocal connectivity is random and
not stronger

To assess the contribution of this nonrandom
connectivity to the predicted reciprocity, we gen-
erated a model accounting for cluster-specific
connection probabilities (see methods). This
“heterogeneous cluster Erdős-Rényi model”
(het-ER) predicted an even slightly higher re-
ciprocal connectivity comparedwith the pooled
data (117 ± 10 versus 96; Fig. 1, B and C).
Furthermore, reciprocal connectivity on the
cluster level was, on average, similar to or lower
than that predicted by the het-ERmodel across
clusters with different connection probabilities
(fig. S3A). This suggests that there is no over-
representation of reciprocity in the temporal
cortex beyond the identified heterogeneous
cluster connectivity. To further analyze this
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clustered network topology, we counted the
number of common (synaptically connected)
neighbors for each probed neuron pair (see
methods). In line with previous reports (5),
pairswithmore commonneighbors had higher
connection probabilities. However, the same
trend was also present in simulations of the
het-ER model (Fig. 1D). These results were
also evident when analyzed on the patient
level (fig. S3B). Thus, the common-neighbor
rule does not represent a major wiring princi-
ple beyond the identified heterogeneously dis-
tributed connectivity.
Another hallmark of rodent cortical micro-

circuit studies is the increased excitatory post-
synaptic potentials (EPSPs) in reciprocal pairs
and densely connected clusters (4, 5, 27). In
line with previous synaptic connectivity studies,
we found lognormal EPSP amplitude distribu-
tions (lognormal fit estimates: m = −0.91, s =
1.02). However, in our human data, EPSP ampli-
tude of reciprocal connections was not statis-
tically different compared with unidirectional
connections (0.38 versus 0.43 mV, P = 0.05,
Mann-Whitney U test; Fig. 1E). EPSP ampli-
tudes also showed no significant relationship
to cluster connectivity (P = 0.55, linear mixed
effect model; Fig. 1E) or number of common
neighbors (P = 0.42, one-way analysis of var-
iance; Fig. 1D). The independence of EPSP
amplitude from local connectivity was further
preserved across different cluster sizes and at
the patient level (fig. S3, C to E). These dif-
ferences in comparison to juvenile rodent
cortices could arise through age, region, and
species specificity.

Local connectivity is directed

In cortical microcircuits, higher-order network
motifs have been studied, revealing non-
random features of synaptic connectivity
(4, 28, 29). One common approach to study
network structure beyond pairwise statistics is
to consider triadic motifs, which describe the
16 nonisomorphic configurations of how three
nodes can be interconnected (28). We found
the profile of over- and underrepresentation
of triadic motifs, relative to the ER model, to
be similar to that in rodents (Fig. 1F; see
methods) (4, 6, 30). However, the het-ERmodel,
which accounts for the highly variable dis-
tribution of connectivity, was able to substan-
tially reduce the number of nonrandommotifs,
in line with theoretical predictions and con-
nectivity data from electronmicroscopy (25, 29).
The overrepresentation of the directed and
marked underrepresentation of the cyclic triadic
motif remained unexplained. Directed transi-
tive motifs and simplices have been previously
identified as relevant network structures (31).
We thus analyzed directed and simplicial mo-
tifs of higher order and found them to be
consistently overrepresented compared with
ER and not completely approximated by the

Fig. 1. Connectivity and synaptic strength in the human cortical microcircuit. (A) Multineuron patch-clamp
recordings from one example cluster with eight L2-3 pyramidal neurons in human middle temporal gyrus.
Graph depicts monosynaptic connections between neurons at spatial locations. Current-clamp traces show
elicited action potentials (APs) of presynaptic neurons (black) above EPSPs of connected postsynaptic
neurons (blue). Asterisks mark traces that have been scaled down by a factor of two. (B) Probabilities of
unidirectional (black) and reciprocal (orange) connections. Gray and red represent expected reciprocity
based on random models. Error bars indicate standard deviation in models. (C) Scatter plot of unidirectional
and reciprocal connection probability of each cluster (n = 177) for different cluster sizes (number of neurons
in cluster). Bar plots show probability of recorded clusters (black, orange) and simulated clusters (red: het-
ER). Line and bars represent means, shade and error bars represent standard deviation. (D) (Top) Connection
probability (lines) of pairs (filled circles) with different numbers of common neighbors (open circles) in data
(black) and in random models (gray, red). Shaded areas represent bootstrapped 95% confidence intervals.
(Bottom) EPSP amplitude distributions (log scale) are shown for pairs with different numbers of common
neighbors. Horizontal lines indicate the median. (E) EPSP amplitudes of monosynaptic connections (dots) shown
for different connection probabilities of the cluster from which each connection was recorded, colored by
unidirectional (black) or reciprocal (orange) connection. Lines represent linear fits. Box plots on the right show
pooled data. P value calculated by Mann-Whitney U test. (F) Normalized over- or underrepresentation of different
network motifs in the data compared with random models (gray, red). Asterisks mark statistically significant
deviations from the random model, corresponding to z-scores exceeding 2.3. This threshold represents an
adjusted significance level (a = 0.05), calculated using the false discovery rate. (G) Directionality score for each
cluster (n = 177) dependent on its number of connections based on data (black) and the het-ER model (red). Lines
represent linear fits. Box plot shows directionality of clusters divided by the number of connections. ***P < 0.001,
paired t test. (H) Scatter points represent cumulative reciprocity and directionality calculated for each patient,
divided by the het-ER model prediction. Shaded curves represent fitted kernel distributions.
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het-ER model (Fig. 1F; see methods). Similar
results were also present at the patient
level andwhen only including larger clusters
(fig. S4, A and B). These results suggest that
the network exhibits directed structures that
cannot be explained by the nonrandom dis-
tribution of cluster connectivity. To establish
a general measure of directionality at the
cluster level, we calculated a directionality
score for each cluster. This measure estimates
the “feed-forwardness” of a given network on
the basis of the cumulative difference between
in- and out-connections of each neuron (31)
(Fig. 1G; see methods). Directionality in the
data was significantly higher than predicted
by the het-ER model (2.5 ± 1.1 versus 1.6 ±

0.2, mean ± SD of normalized directionality,
P < 0.001, paired t test), especially in densely
connected clusters (Fig. 1G).

Directionality is independent of
epilepsy factors

This study was performed on cortical tissue of
individuals with drug-resistant TLE. To extend
our findings to patients without TLE, we ob-
tained tissue across different cortical areas
from tumor surgeries of individuals with (n =
5) and without symptomatic epilepsy (n = 4;
fig. S5). Connection probability between L2-3
PCs in tissue from individuals with tumors
was lower than in tissue from individuals with
TLE (9%, 165/1916, P = 0.001, Mann Whitney

U test at patient level; fig. S5B). Median syn-
aptic amplitudes were slightly lower (0.38
versus 0.45 mV, P = 0.02), but the overall dis-
tributionwas very similar (interquartile range:
0.61 versus 0.62 mV; fig. S5C). To estimate the
impact at the level of single individuals, we com-
puted individualized estimates of reciprocity
and directionality. These cumulativemeasures
are robust proxies for network recurrency that
can be compared with the het-ER model (see
methods). Reciprocity and directionality were
more heterogeneous in individuals with tumors
than in those with TLE (fig. S5D), possibly
because of additional confounds such as dif-
ferent brain regions, age range, tumor entity,
and presurgical tumor treatment. A subset of

Fig. 2. Spatially biased connectivity and lack of
cycles. (A) Probed (light blue), identified (dark blue),
and reciprocal (orange) connections (dots) at relative
lateral and vertical intersomatic distances, with the
presynaptic soma aligned to origin, represented by
example neuron reconstruction with axon in red.
(B) Connection probability for 80 mm by 80 mm bins
around the presynaptic soma, pooling data from
lateral sides. Line plots show increasing connectivity
toward deeper neurons and a lateral drop in
connectivity: blue for unidirectional, orange for
reciprocal connectivity. Shaded areas represent
boot-strapped 95% confidence intervals. (C) Box
plots represent the normalized directionality (divided
by number of connections) of all recorded (black)
and simulated clusters (red, blue). ***P < 0.001,
**P < 0.01, paired t test. (D) Normalized relative
over- and underrepresentation of selected motifs
from Fig. 1F compared with random models (red,
blue). Spatial-het-ER model only includes clusters
with available neuron location. Asterisks mark
statistically significant deviations from the random
model, corresponding to z-scores exceeding 2.3. This
threshold represents an adjusted significance level
(a = 0.05), calculated using the false discovery rate.
(E) Reconstruction of the cluster with highest
directionality score. Colored triangles represent
soma locations, axons are colored for each neuron,
and all dendrites are black. (F) (Top) Total motif
count of cyclic motifs in the data (black bars)
compared with the median count in the random
model simulations (colored bars). Note that for
comparison with spatial models (blue bars), neurons
without coordinates were excluded. Error bars
represent the interquartile range. P values from rank-
based statistical test: ***P < 0.001, **P < 0.01,
*P < 0.05. (Bottom) Observed (black) and simulated
(red, blue) mean probability of different cyclic motifs
for each cluster (dots). Clusters without spatial
coordinates are not shown. Arrows highlight clusters
with nonzero cycle probability. The recorded cluster
marked with a hashtag has a cycle motif probability
of 4.8% and has been moved for visualization.
(G) Hierarchically sorted monosynaptic connectivity
graph of cluster from (E). Colored triangles indicate same neurons as in (E). Fourteen connections target deeper neurons (black arrows),
and six connections target more superficial neurons (gray arrows).

RESEARCH | RESEARCH ARTICLE

Peng et al., Science 384, 338–343 (2024) 19 April 2024 3 of 6

D
ow

nloaded from
 https://w

w
w

.science.org at H
um

boldt-U
niversitaet B

erlin (w
ith C

harit) on A
pril 19, 2024



individuals with tumors, with and without
symptomatic epileptic seizures, exhibited
microcircuit principles that resemble our
epilepsy data, such as underrepresentation of
reciprocity and increased directionality (fig. S5,
A andD). Those cases suggest that thesenetwork
properties are not specific to the temporal cor-
tex or the TLE condition. However, to what
extent other cortical regions resemble our results
remains to be established. We next aimed to
estimate the impact of epilepsy-associated con-
founds within our TLE cohort, which exhibited
varying clinical phenotypes (ranging from 2 to
50 years disease duration and 2 to 30 seizures
permonth).Our individual-level analysis showed
random or underrepresentation of reciprocity
and increased directionality consistently across
individuals and irrespective of hemisphere, sex,
pathology, disease duration, seizure frequency,
andmedication intake (Fig. 1H and fig. S6). The
fact that we observed these properties across
individuals despite substantial differences
in disease phenotype suggests that epilepsy-
associated alterations are not major contrib-
utors to the identified microcircuit principles.

Vertical connectivity is spatially directed

Our results indicate that the observed networks
are more directional than the het-ER model,
suggesting additional nonrandom structures.
One well-known constraint on connectivity is
the relative anatomical location of the neurons.
We reconstructed spatial offsets of neuronpairs
based on the postsynaptic and presynaptic soma
location (Fig. 2A). Consistentwith rodent studies
(4) and as reported in our previous study on
thisdataset (15), connectionprobabilitydecreased
with increasing intersomatic distance. Given
the large sample size in our data, we were able
to quantify the interaction of both distance and
direction by distinguishing intersomatic dis-

tances along the vertical and lateral axes (Fig.
2B). We found that connection probability
decreased with increasing lateral distance
and toward the apical dendrite. Contrary to
the expected distance-dependent decrease of
connectivity, the connection probability increased
when the postsynaptic soma was located at
deeper positions along the vertical axis (Fig.
2B). This was observed irrespective of laminar
depth and across individual subjects (P < 0.001,
linear mixed effect model; fig. S7). As direction-
dependent connection probability has also been
found in rodents (5), we propose that this spa-
tially directed connectivity represents a principle
that is shared across species.
To determine whether this asymmetry could

account for the network motifs and direction-
ality, we generated a “spatial heterogeneous
ER”model (spatial-het-ER) that incorporates
the anatomically biased connectivity and the
heterogeneous cluster connectivity (seemethods).
We found that this combined spatial-het-ER
model had a significantly higher directional-
ity at the cluster level than did the het-ER
model (median: 1.8 versus 1.6, P < 0.001, Mann-
Whitney U test) but did not explain the full
extent of directionality in the data (median:
2.3; Fig. 2C). To further disentangle the un-
explained directionality, we assessed the spatial-
het-ER model prediction for a subset of the
previously overrepresented motifs. We found
that the spatial model was able to reduce the
overrepresentation of these directed motifs by
>50% compared with the het-ER model (Fig.
2D and fig. S4). This suggests that the spatially
asymmetric connectivity contributes strongly
to the directed network topology. However,
the model still leaves a substantial residual
directionality unexplained, indicating a feed-
forwardness in the network beyond spatial
asymmetry. The residual directionality could

arise from the fact that neither the het-ERmod-
el nor the spatial-het-ER model is able to ac-
count for the underrepresentation of cyclic
triadic motifs (Fig. 2D). As cycles increase the
number of overall connections with zero
contribution to the directionality score (see
methods), the increased normalized direction-
ality in the data could result from a more
general underrepresentation of cyclicity in
the clusters.

Local connectivity is largely acyclic

Thus, we investigated cyclic motifs with four,
five, and six neurons that are connected in such
a way that they form a unidirectional cycle
and found a similar underrepresentation (see
methods). The pooled number of these cyclic
motifs in all recorded clusters was under-
represented comparedwith themodel predictions
(Fig. 2F, top row). To confirm the underrepresen-
tation of cyclic motifs at the level of indepen-
dently recorded clusters, we analyzed the
frequency of cycles of different lengths in each
cluster.We found thatmost clusters—and espe-
cially the densely connected ones—do not ex-
hibit any cyclic motifs, whereas the het-ER and
spatial-het-ER models predict an increase of
cyclic motifs with increasing connectivity (Fig.
2F, bottom row). Although the sampled cluster
sizes limit investigation of even bigger cycles,
our ability to sort recorded clusters with dense
connectivity as fully hierarchical graphs high-
lights the directed and acyclic structure of intra-
laminar network topology within the human
L2-3 temporal cortex (Fig. 2, E and G).

Identified network principles increase
computational capacity

To explore the implications of the network fea-
tures identified in the human L2-3microcircuit
on neural activity, we simulated neural network

Fig. 3. Impact of network principles of the human L2-3 temporal cortex on
network dimensionality. (A to C) For different network principles, the top graph
illustrates the network structure found in humans (black), ER random model
(red), and rodents (purple). The scatter plots show the state space volume of
simulated networks with different degrees of reciprocity, weight correlation, or
cyclicity, relative to the state space volume of a random ER network. The scattered
schematic to the right shows the distribution of eigenvalues of the effective connectivity
between the pyramidal neurons. Note that the weights in all simulations are scaled to
maintain the maximum real part of the eigenvalues at one (vertical line) to ensure
that the network remains at the edge of stability (see methods).

(D) Schematic representation of the relationship between the directionality of a
network (increased by reduced reciprocity and cyclicity) and the network state space
volume. Bar graph shows the performance in a speech recognition [machine learning
(ML)] task of simulated networks that are constrained by rodent-like higher reciprocity
(purple), ER random connectivity (red), and human temporal cortex–like acyclicity
(black) (see supplementary text section 2.3). Bars represent mean and SD from 100
simulations. The rodent L2-3 sensory cortex has lower network directionality, which
corresponds to lower network state space. The human L2-3 temporal cortex exhibits an
increased network directionality through lower reciprocity and cyclicity, which leads to a
higher network state space volume.
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models based on the empirically identified con-
nection probabilities, including the connectivity
between pyramidal neurons and interneurons
(PC-IN: 24.5%, 53/216; IN-PC: 25%, 54/216; fig.
S8; see methods). We adapted the model
network directionality by varying reciprocity
and fraction of short cycles (Fig. 3C, A and B).
We further constrained the models by vary-
ing the correlation between connection prob-
ability and strength (Fig. 3C; see methods).
To have networks that are comparable in terms
of dynamics, we kept the excitation/inhibition
balance and scaled the weights tomaintain the
network at the edge of stability or at criticality
(32). This means that networks with lower
reciprocity or cyclicity have stronger weights
(see supplementary text section 1.3). Following
previous works on recurrent neural networks
and random matrix theory (33), we studied
the effects of our identified network princi-
ples on the activity in network models both
analytically (supplementary text section 1) and
in simulation (see methods). Specifically, we
focused on the variability and independence of
neuron population activity and formalized this
using ametric describing the neural state space
volume (supplementary text section 1). Rodent-
like networkswith a higher reciprocity have a
smaller state space volume than do random
and humanlike networks (Fig. 3A); this is
because eigenvalues of the effective connectivity
matrix are less spread out on the imaginary
plane (Fig. 3A; supplementary text section 1).
We further found that the removal of short
cycles also increased the state space volume of
the network (Fig. 3B). Finally, to assess how
correlation between connection probability and
strength affects network activity, we created
two clusters with different connectivity and
distributed the weights independently or in
accordance with connection probability.High
correlation of probability and weight, as has
been attributed to the rodent sensory cortex
(27), leads to a smaller state space volume in
the network activity and a more contracted
distribution of eigenvalues (Fig. 3C). These
relationships between state space volume
and the network principles remained un-
changedwhen constrained by the connectivity
and weights observed in the tumor cohort (fig.
S5D; supplementary text section 1.4).
To study the computational implication of

the increased state space volume, we trained
recurrent neural networks with these principles
on several machine learning tasks (supplemen-
tary text section 2). On a task that requires long
memory and rich features (spoken digit rec-
ognition; supplementary text section 2.2), we
found that networks with high reciprocity
(rodent-like) had lower task performance com-
pared with an ER network (91.5% versus
92.8%,mean accuracy of 200-neuron networks,
P < 0.001; Fig. 3D). Furthermore, equally large
networks with fewer short cycles (human

temporal cortex–like) had a higher task per-
formance compared with ER networks (93.9%
versus 92.8%, P < 0.001; Fig. 3D; supplemen-
tary text section 2.3). To put these accuracy
values into a biological context, we evaluated
how many neurons would be necessary to
achieve equal performance of the ER network
with 200 neurons (Fig. 3D). In our simulations,
a rodent-like network with higher reciprocity
would need 380 neurons (90%more), whereas
a humanlike network with fewer cycles would
only need 150 neurons (25% less). Overall, our
analytical and simulation results suggest that
the network principles observed in the hu-
man temporal cortical layer 2-3 could be tuned
to provide an increased variability of network
activity across multiple dimensions (Fig. 3D).
This could enhance the ability of local cor-
tical microcircuits to retain rich input features
for a longer time (33) and provide more fle-
xible representation of sequential inputs (21).

Discussion

We have identified a predominantly directed
and acyclic network architecture within the
excitatory microcircuit of the human L2-3 tem-
poral cortex. Such architecture could facilitate
a hierarchical flow of information within the
cortical layer, supporting sequential activation
of neurons (34) and complex synaptic events
(35). As local connectivity is mainly mediated
through basal dendrites, these principles could
represent prerequisites for bottom-up compu-
tations (9). This would be at odds with the
previously suggested small-world network
properties of the cortical microcircuit (26). In
the rodent cortex, strong and reciprocally con-
nected neurons are consistent with low dimen-
sionality of in vivo population dynamics (22, 27),
a frequent observation in large-scale neural re-
cordings (36). Whereas the biased connectivity
along the dendrite-axon axis could represent
a shared principle for introducing cost-efficient
local directionality across species (5), the hu-
man L2-3 temporal cortex exhibits a more
directed network topology owing to its random
reciprocity and lack of cycles (4, 25). Another
aspect that differentiates the human cortex
from the rodent cortex is the independence of
synaptic strength and connectivity (27).
Limitations of our study include sampling

of neurons within intersomatic distances of
approximately 200 mm in the supragranular
layer of the temporal cortex; recurrent con-
nections at larger lateral distances or in other
cortical layers and regions cannot be excluded.
Cutting of axons during the slicing process is
unavoidable. We minimized the impact of
slice cutting on our results by morphological
curation and additional analyses (fig. S2, C
to E). The major limitation of studies based
on resected cortical tissue is the lack of healthy
control tissue. Consistent with previous studies
on human resection tissue, which reported no

differences in cellular or synaptic physiology re-
garding disease (11, 13), our analysis indicatedno
significant effect of clinical epilepsy parameters
on our results (fig. S6).
Finally, we show analytically and through

simulations that each of the identified network
principles can increase the network state space
volume, which would allow higher dimen-
sional representations of the local neuronal
activity. Whereas this activity will further be
constrained by interlaminar and long-range
connectivity, such an increased dimensionality
could allow information processing at longer
timescales to retain and process complex in-
puts (37). Towhat extent these properties under-
lie the unique cognitive abilities of humans or
represent a more general principle beyond the
human temporal L2-3 cortex remains to be
determined. Our results not only provide evi-
dence for the implementation of directed acyclic
graph–like topology in the human cortex but
also could further serve as an inspiration for
artificial neural network architectures.
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